Evaluation of water stress control with polyethylene glycols by analysis of guttation.
نویسندگان
چکیده
The water relations of pepper plants (Capsicum frutescens L.) under conditions conducive to guttation were studied to evaluate the control of plant water stress with polyethylene glycols. The addition of polyethylene glycol 6000 to the nutrient solution resulted in water relations similar to those expected in soil at the same water potentials. Specifically, xylem pressure potential in the root and leaf became more negative during a 24-hour treatment period, while osmotic potential of the root xylem sap remained constant. The decrease in pressure potential was closely correlated with the decrease in osmotic potential of the nutrient solution. In contrast, the addition of polyethylene glycol 400 to the nutrient medium resulted in a reduction of osmotic potential in the root xylem sap; this osmotic adjustment in the xylem was large enough to establish an osmotic gradient for entry of water and cause guttation at a nutrient solution osmotic potential of -4.8 bars. Pressure potential in the root and leaf xylem became negative only at nutrient solution osmotic potentials lower than -4.8 bars. About half of the xylem osmotic adjustment in the presence of polyethylene glycol 400 was caused by increased accumulation of K(+), Na(+), Ca(2+), and Mg(2+) in the root xylem. These studies indicate that larger polyethylene glycol molecules such as polyethylene glycol 6000 are more useful for simulating soil water stress than smaller molecules such as polyethylene glycol 400.
منابع مشابه
Effect of Polyethylene Glycols Dissolved in Aqueous Phase on the Extraction-Separation of La(III), Eu(III) and Er(III) Ions with Bis(2-ethylhexyl)phosphoric Acid
The present work concerns on the investigation of the role of polyethylene glycols (PEGs) as masking agent for amelioration of extraction-separation of La(III), Eu(III) and Er(III) ions by the acidic extractant bis(2-ethylhexyl)phosphoric acid (DEHPA). The studied solvent extraction system is based on the combination of chelating effect of DEHPA in the organic phase on the one hand, and the bin...
متن کاملMorphological And Physiological Response of Two Accessions of Citrullus colocynthis to Drought Stress Induced by Polyethylene Glycol. Zahra Mohammadzade and Forouzandeh Soltani *
A biotic stresses can directly or indirectly affect the physiological status of an organism by altering its metabolism, growth, and development. In order to study the effect of drought stress on Citrullus colocynthis samples a factorial experiment was conducted in Horticultural science Department of University of Tehran in 2013. The first factor was two accessions of Citrullus colocynthis (Yazd...
متن کاملSemipermeable membrane system for subjecting plants to water stress.
A system was evaluated for growing plants at reproducible levels of water stress. Beans (Phaseolus vulgaris L.) were grown in vermiculite, transferred to a semipermeable membrane system that encased the root-vermiculite mass, and then placed into nutrient solutions to which various amounts of polyethylene glycol (PEG) 20M were added to control solution water potential. The membrane (Spectrapor ...
متن کاملThe Role of Polyethylene Glycols Dissolved in Aqueous Phase on the Extraction-Separation of Zn(II) and Pb(II) by Bis(2-ethylhexyl)phosphoric Acid
The presented study describes the solvent extraction process of Zn(II) and Pb(II) from aqueous solutions by a cation exchanger extractant named bis(2-ethylhexyl)phosphoric acid (DEHPA). The results confirm that both of the extraction efficiency and extraction selectivity depend on the employed organic diluent. The applied extractant was selective towards zinc ions; this selectivity did not depe...
متن کاملDifferential Response in the Water Status of Immature and Mature Fronds of the Ostrich Fern (Matteuccia struthiopteris [L.] Todaro) to a Mild Water Stress.
Experiments were conducted in growth chambers to examine the effect of a mild water stress (-200 kilopascals polyethylene glycol) on frond elongation and water status of the ostrich fern (Matteuccia struthiopteris [L.] Todaro). Measurements were taken for two days, starting one day after the application of polyethylene glycol. Total water potential in control (well-watered) plants was always si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 47 4 شماره
صفحات -
تاریخ انتشار 1971